10 namespace alps {
namespace alea {
19 for (
size_t j = 0; j != in_size; ++j) {
24 result.colwise() -= f(x);
45 ptrdiff_t sum_count = in.
count().sum();
50 leaveout = (sum_batch - in.
batch().col(i))
51 / (sum_count - in.
count()(i));
52 res.batch().col(i) = tf(leaveout);
55 res.count() = in.
count();
59 res.batch().array().rowwise() *=
60 -(sum_count - res.count().array()).
template cast<T>();
63 sum_batch /= sum_count;
65 res.batch().colwise() += mean_result * sum_count;
eigen< T >::matrix jacobian(const transformer< T > &f, column< T > x, double dx)
batch_data< T > jackknife(const batch_data< T > &in, const transformer< T > &tf)
eigen< T >::matrix & batch()
eigen< size_t >::row & count()
Eigen::Matrix< T, Eigen::Dynamic, Eigen::Dynamic > matrix
traits< Acc >::result_type result(const Acc &acc)
size_t num_batches() const
Eigen::Matrix< T, Eigen::Dynamic, 1 > col